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ADVANCED EXPERIMENTAL TECHNIQUES IN CRACK TIP MECHANICS

by
Ly A. S. Kobayashi
X University of Washington
F Department of Mechanical Engineering
e Seattle, Washington 98195
i.‘“
- ABSTRACT
y - Advanced experimental techniques in crack tip mechanics are discussed
fl': under three categories of 2- and 3-D linear elastic, 2-D elasto-plastic and
f?' 2-D dynamic fracture mechanics. Specific techniques which were discussed are
'C acousto-elasticity, frozen stress-mofre technique, isodyne photoelasticity,

moire technique, laser speckle method, hybrid experimental-numerical analysis
A and caustic method. &

L INTRODUCTION

The experimental techniques for crack tip mechanics of the 1970's were
A% governed by the practical requirements for determining accurately 2- and 3-D
) stress intensity facters in linear elastic fracture mechanics (LEFM). The

¥ extensive applications of three-dimensional frozen-stress phototelasticity
o~ (1), interferometry [2] and mofre method [3] yfelded statfc stress intensity
*E factors for complex boundary value problems, such as a corner flaw at a

3 nozzle-cylinder junction and at a through hole [4] and a compact specimen [S].
Dynamfic stress intensity factors determined by the extensive use of dynamic
photoelasticity [6, 7] and dynamic caustics [8, 9] provided consfderable
insight to the controversial criteria for dynamic fracture and crack arrest.
Dynamic photoelasticity and dynamic caustics were also used to establish
dynamic crack curving and branching criteria [10, 11], which are also applii-
cable to static and quasi-static crack problems, and to repudiate the proposed
fracture mechanics interpretation of the V-notched Charpy data [12]. These
experimental techniques, which are constantly being improved to determine
well-defined physical quantities, 1.e., the stress intensity factors, have
contributed to the credibility which 1inear elastic fracture mechanics com-
mands, fn postmortem failure analysis and 11fe-time prediction of structural
components.
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The inevitable extensions of 1inear elastic fracture mechanics to
fracture of composites, fatigue crack extension and stable crack growth as
well as ductile fracture have imposed a new role onto the above experimental
techniques. The experimental results are now also used to identify the
physical laws and associated physical parameters governing these fracture
phencmena. The search for these unknown physical parameters requires
increased experimental accuracy as well as advanced data processing technique
in the presence of geometric and material nonlinearities encountered 1in
nonlinear fracture mechanics.

The purpose of this paper 1s to review the advances made 1n the
established experimental techniques as well as to report on new experimental
techniques for analyzing the traditional as well as new problems in crack tip
mechanics. The techniques are discussed under three categories of 2- and 3-D
Tinear elastic, 2-D elasto-plastic and 2-D dynamic fracture mechanics.
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2-D Ltnear Elastic Fracture Mechanics
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Acousto~elasticity

Acousto-elasticity, which was hafled as an analog to photoelasticity for
opaque materials in 1959 [13), fafled to achieve wide acceptance due to the
unresolved transducer coupling effect and high sonic attenuation [14). The
resurgence of acousto-elasticity in the 1980's 1s due 1n parts to improve-
ments 1n the instrumentation techniques but {s mainly attributed to the
ability for processing large amounts of ultrasonic data by a computer-
controlled scanning system [15]. Since longitudinal ultrasonic waves provide
information only on plane-stress isopachics (sum of principal stresses), the
-~ use of shear waves measurements, which are referred to as acoustic birefrin-
I; gence, is more widely used today. Influence of the inherent acoustic anisotro-
. py (texture) in the materfal can be modeled by orthotropic elasticity theory
which involves three acousto-elastic constants [16, 17). The acoustic bire-
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where Bo is the initial birefringence of the unstressed state. "1’ "2 and M3
are the three acousto-elastic constants.

The angle between the initf{al and stressed acousto-elastic axes, which in
general do iot coincide with the principal stress axes, is

M,(o, - o,)sin 26
3'1 2 (2)
o M](c] + 02) +‘ﬁ(o] - cz)cos 28

tan 2¢ = B

The shear stress in the xy plane is then given by

s = Bsin2 (3)
Xy 2‘“3

Clark, Mignogna and Sanford [18] used the above relations to measure the
stress intensity factor in a 2024~T351 aluminum compact specimen shown 1in
Figure 1. A pulse-echo-overlap system, as shown in Figure 2, was used to
determine point-by-point, the orientation of the acoustic axes and the
acoustic birefringence in the 51 x 51 mm square region shown 1n Figure 1. A
10 MHz ac-cut quartz shear-wave transducer of 1.8-mm diameter was used in a
manual scanning process. The estimated accuracy were approximately 5% and + 2
degrees in birefringence and ¢ measurements, respectively.

The acousto-elastic birefringence generated from 66 data points in the
square regfon was reconstructed and Sanford's procedure [19] was used to
compute five coefficients in the LEFM crack tip stress field by averaging the
results of 100 computations using 20 randomly selected data points each time.
Good agreement between the corresponding coefficients, which were obtained
from a similar photoelasticity experiment, were noted. The stress intensity
factor was computed from the coefficient of the first term,» or the 1/(’? term,
in the above polynomial crack tip stress field.

The acousto-elastic technique 1s one of the few static, stress analysis

------------------------------------------------
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f} techniques available for opaque materials. As in 2-D photoelasticity, the

jﬁ thickness-averaged acoustic birefringence is not subject to the plane stress
constraint of the caustic method. Obvious improvement in the technique can be
made by incorporating an automated scanning procedure with real-time data
processing which has been used by others [15]. Yet to be explored is the
physical significance of acoustic birefringence associated with the crack tip
plastic region associated with ductile fracture.
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Frozen Stress-Moire Technique

B

:; The hybrid technique, which utilizes both frozen stress, 3-D photo-

:ig elasticity and moire interferometry, provides the complete information for
:é characterizing the crack tip state [20]. The procedure is redundant in that
w2 the in-plane displacement field, which is determined by the high resolution
g? moire technique [21], also defines the strain and stress fields. The iso-
X2y

A chromatics, however, can be used to verify the accuracy of the stresses

)
»

i which are obtained by numerically differentiating the displacements. Such
e optimum use of the redundant experimental data 1s yet to be explored.

33 The procedure consists of applying an aluminum reflective grating to the
S slices cut from the frozen-stress 3-D photoelastic model and returning the
'éi slice to 1ts unloaded stage by annealing through its critical temperature.
4 The in-plane displacements are obtained by moire interferometry of the

Jé:f deformed grating superimposed onto an undeformed virtual grating with a

?ﬂ grating density of 2400 1ines per mm. Figure 3 shows experimental setup for
5 viewing the Moire fringes. The in-plane displacements of u, and u, are

o related to the stress intensity factor by:

s,

gi For plane strain,

i

"3 L 2 8

.‘ U, = o Ecos-{[l-zwsin 2-]

: (4)
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For plane stress,

(5)

where G {s shear modulus of elasticity,
v is Poisson's ratio

The photoelastic-moire technique was used to determine the varfation in
stress intensity factor along a straight crack front in a four-point bend
specimen of 279.4 x 25.7 x 13.3 mm sfze after ASTM E399, Figure 4 shows the
stress intensity factors at the center slice of this cracked beam determined
by both photoelasticity and moire interferometry for a crack depth to beam
ratio of 0.5. The reference Kth in Figure 4 was determined by 2-D plane
strain analysis [22]. Figure 5 shows the variation of stress fntensity factor
through the thickness of the beam. A state of plane stress and the presence
of a I/J’F'singularity were assumed in the data reduction process.

While the uncertainties in the relaxation mechanism as well as the
resultant state of stress associated with the annealing process require
further studfes, the frozen stress-mofre techniques provides a mean for
complete and detailed stress analysis of the crack tip state in 3-D 1linear
elastic fracture mechanics.

Isodyne Photoelasticity

Isodyne represents curves of constant intensity of the normal forces
acting on the characteristic curves in a plane stress field and are thus
related to the first derivatives of the Airy stress functfon. Two 1sodyne
fields related to two orthogonal characteristic curves completely define the
elastic state of plane stress [23]. When modeled optically with the {nte-
grated polariscope, shown in Figure 6 [24], the photoelastic {sodynes resemble
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the isochromatics generated by scattered 11ght photoelasticity. Similar to
scattered 11ght photoelasticity, optical inhomogeneity generated by the high
stress gradient in the vicinity of the crack tip may distort the photoelastic
1sodyne. The requirement for a plane stress state, which i{s not a prerequi-
site in scattered 1ight photoelasticity, can be modulated by the "semi-plane
stress state" used by Pindera et al. [25] who then detemined the stress
intensity factor at the midsection, 1.e. plane of symmetry, of a four-point
bend specimen shown in Figure 7. Also shown in Figure 7 is the varfation in
the stress intensity factor computed for varifous crack tip distance where a
pronounced effect of the near-tip nonlinearity and crack tip bluntness are
noted.

Asssuming that the influence of optical {nhomogeneity in the scattered
1ight path can be quantified, the photoelastic isodyne technique share the

- same advantage of 3-D scattered photoelasticity which can be used to analyze

the crack tip state of stress under 1ive load. The stress intensity factor
can be computed more accurately if K i{s expressed directly in terms of the
isodyne value thus eliminating the extra numerical differentiation process 1in
obtaining the stresses.

2-0 Elasto-Plastic Fracture Mechanics

The experimental techniques 1isted in this section obviously can be used
for elastic analysis but unitke the above, are not limited to elastic
analysis.

Moire Technique

The use of moire technique in elasto-plastic fracture mechanics is not
new [3, 26). Despite its obvious application to high temperature, nonlinear
problems in fracture mechanics, literature is relatively sparse in the frac-
ture mechanics interpretation of the crack tip displacement field determined
by the moire method. Exception to the above 1s the analysis of externally
notched rings sliced from a Type 304 stainless tube, 7.1-mm 0.D. and 0.38 mm
thick, with electro-etched cross-line gratings of 40 1ines per mm and subjec~-
ted to a simulated internal pressure at 1100 F [27]. Figure 8 shows the
experimental setup for recording the distorted grating which was analyzed by
master gratings of 4 and 8 11nes/mm. From the resultant u and v moire fringe
patterns, COD for slow-crack growth initiation was found to be
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P COD = 0.976 « a » o> /8 (6)

where the crack length a and the applied hoop stress ¢ are represented in
terms of mm and KN, respectively.

* Figure 9 shows that the initiation COD in this experiment remained

' relatively constant despite the changes in the crack tip biuntness. Sciam-
marella then estimated the J-integral for the initiatfon of slow crack growth
by the following approximate formula after Rice et al. [28].
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i where b is the 1igament length, t is the specimen thickness, Gcr is the dis-
i placement due to the presence of the crack between two reference sections for
2 the load at the moment of crack initiation and
A (8)
P = oA
3 where o 1s the hoop stress and A the specimen cross-sectional area. The
. values of 6cr were obtatned as
; = - (9)
o 6cr 6total 6nocr-
: where Gtotﬂ is the displacement between two reference cross sections and
y Gnocr 1s the displacement given by
= (10)
6nocr Aeh

Moire method, which was 1imited {n its applications to fracture problems
involving large scale yfelding due its low sensitivity, can be used in the
high sens{tivity region of l1inear elastic fracture mechanics by the recent
developments i1n high density 1ine gratings upto 4000 11nes per mm with grating
sfzes upto 100 x 63 mm (29]. The use of virtual grating, which was described
previously, eliminates the need for physical contact of the reference grating.
Its use at elevated temperature testing, such as that described above, or
under an explosive loading condition may be in doubt since the long optical
paths, which is required in the experimental setup, may be distorted by the
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TABLE 1 o
J1n For Ring Specimen at 1100°F
Ring Peé, Jin
2N MNo. K _Mif
1 0.0682 0.03980
2 0.0565 0.05554
.‘_:‘ 3 0- 0455 o. 04755
< 4 0.0661 0.04520
"3 5 0.0517 -0.04762
o 6 0.0298 0.02206
v 7 0.0684 0.04681
8 0.0421 0.03484
-.. 9 0.0709 0.04742
'f‘ Table 1 shows the excess variations in the J estimated by this procedure thus
- leading this author to conclude that COD is a better criterion for predicting
o the inftiation of slow crack growth. '
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moving air current or shock waves.

The woire fringes can be generated by holographic interferometry.
Referred to as "intrinsic holographic moire", these fringes can be recorded
by usfng the basic setup shown in Figure 10 [30]. The reference state 1is
obtained by a single exposure of the unloaded specimen. Rigid body motions of
the loaded specimen are compensated by displacing the reference state and
observing the fringe contrast in the TV monitor. The u and v fringe patterns
are recorded on tape or alternatively photographed directly.

Laser Speckie Method

Despite its many implied app11cat16ns in fracture mechanics [31, 32),
1iterature is void of useful data which has been generated by the speckle
method. With its high sensitivity, i.e. u and v displacement measurements of
the order of 0.005 mm, the laser speckle method should find wide ranging
applications in experimental fracture mechanics. By using the digital imaging
technique [33, 34] to cross correlate the two speckle images generated by the
unloaded and loaded specimens, the method provides an efficient procedure for
processing the immense amount of data and for easy access to graphic
peripherals.

Hybrid Experimental-Numerical Analysis

One of the major obstacle, which hinders the progress of experimental
ductile fracure research, 1s the undefined crack-tip states of stress and
strain in the presence of large scale yielding. Since the IIJPF's1ngu1ar
state in 1inear elastic fracture mechanics {s a physical impossibility which
successfully models brittle fracture, similar phenomenological model could
be developed for a crack under large scale yifelding. A popular and possibly
over-exploited such model 1s the Dugdale strip yield zone which conveniently
reduces the elastic~plastic crack-tip state to an elastic one. The Dugdale
strip yteld model used in a recent analysis [37] is a modification of the
classical Dugdale model where higher order terms were added to fncrease the
number of disposable parameters. Experimental data is then used to fit
the disposal paramete; assoct .d with the Dugdale model, which is modified
to fit the complex stat( --ssociated with large scale yfelding, Jjust as the
stress intensity factor is determined from photoelasticity and moire fringe
data. The adequacy of such model can be verified by the matching other crack-
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tip data which is not used in the fitting process but which is generated
numerically by the Dugdale model and independently by the experiment. The
extensive numerical experimentation neccessary for this verification study in
essence replaces the finite element or boundary element method used in the
traditional hybrid experimental-numerical stress analysis technique [36]. The
verified modified Dugdale model through the generation mode of hybrid experi-
mental-numerical analysis can then be used to generate numerically various
fracture parameters for evaluation,

The utility of the hybrid experimental-numerical analysis {s demonstrated
by a recent investigation on stable~crack growth under mixed-mode loading
[(37]. Isochromatics fn a 1.6-mm thick polycarbonate tensile specimens with
central slanted crack were recorded during a continuing stable crack growth
period. The resultant Z-shaped crack was modeled by a straight Dugdale crack,
which was modified to account for the residual stresses left behind in the
wake of the rapidly extending crack, as shown in Figure 1ll. The modification
consisted of two unknown tangential forces acting at the physical crack tip.
Lengths of the Dugdale strip yield zones ahead of the crack tip were measured
from the photoelastic records [37]. These lengths coincided with the length
of the theoretical values of the horizontal crack thus just{fying the use of
the model of Figure 11 to represent the Z-shaped cracks. The crack-tip stress
fleld which i{s represented by a polynomtal stress function of the crack-tip
coordinates together with the two unknown tangential forces were fitted to the
recorded elastic isochromatics surrounding the plastic region using an over-
deterministic fitting routine [38). Figure 12 shows the near- and far-fleld
1sochromstics which were regenerated by using the modified Dugdale model and
those obtained by photoelasticity. Figure 13 shows the crack tip opening
angle (CTOA), which was computed by using the modified Dugdale model, for the
two intial crack geometries to be almost constant during the stable crack
growth process.

While the hybrid experimental-numerical technique may not provide the
micromechanics 1nsight to crack-tip mechanics, 1t can be used to effectively
extract fracture parameters which other wise cannot be measured directly.

Caustic Method
The method of caustics is becom’1g a popular technique for measuring the
static and dynamic stress intens{ty factors for plane-stress problems in

11
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Tinear elastic fracture mechanics. Caustic can also be generated by any
deformed specimen surface including the obvious dimpling surrounding a ductile
crack. Rosakis and Freund [39] used an asymptotic elastic-plastic analysis
to relate this dimpling to a plastic intensity factor. By postulating an HRR
singularity, J-deformation theory of plasticity and the separation of theta
and r, the plastic strain in the thickness direction is obtafned as

e (P LD
€33 (eqp * €go) (11)

where the in-plane plastic strain components are given in terms of the stress
components as

%% _JE 4T [ %e \™! s )

p . _Of_ JE & £.-%%

®rr T E [WZI r] (00) Ere™ 2 Top (12)
0°n

The resultant caustic generated by the thickness direction strain of equatfon
(12) is shown in Figure 14, J-integral value can then be determined by

n
uo —— 4 0 n—] ]
0 JE ntl [ "e -
GOOInr 0

where Zy d and 00 are the screen distance, specimen thickness and tenstile
yteld stress, respectively.

While further verification study is necessary, the caustic method
promises to provide an experimental procedure with which, the J-value can be
determnined directly using crack tip measurements in contrast to the ASTM
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designated far-field procedure which 1s based on many simplifying assumptions.

2-D Dynamic Fracture Mechanics

As mentioned in the Introduction, literature {is abundant with experimen-
tal results on 1inear elastic dynamic fracture using dyanmic photoelasticity
and dynamic caustics. Experimental as well as data processing procedures for
these two techniques are contfnually being improved and their domain of appli-
cation is being extented. One such extension is the use of the hybrid experi-
mental-model analysis for modeling the Dugdale strip yield zone ahead of a
rapidly tearing crack [37]. Likewise, the caustic method with its asymptotic
elastic-plastic solution could be extended with relative ease to analyze
problems involving rapid tearing.

CLOSING COMMENTS

While no claim is made for completeness, most of the significant new
experimental techniques for crack tip mechanics hopefully have been mentioned
in this paper. The potential of applying some of the 2-D techniques, which
were listed under specific fields in crack tip mechanics, to other fields
obviously must be explored.
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